Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics

This paper studies the space of BV 2 planar curves endowed with the BV 2 Finsler metric over its tangent space of displacement vector fields. Such a space is of interest for applications in image processing and computer vision because it enables piecewise regular curves that undergo piecewise regular deformations, such as articulations. The main contribution of this paper is the proof of the ex...

متن کامل

Sobolev and Bounded Variation Functions on Metric Measure Spaces

Contents Chapter 1. Introduction 1 1. History 1 2. Motivations 3 3. Examples of metric measure spaces 4 Chapter 2. H-Sobolev space and first tools of differential calculus 9 1. Relaxed slope and Cheeger energy 9 2. Elements of differential calculus 11 3. Reminders of convex analysis 14 4. Laplacian and integration by parts formula 15 5. Heat flow in (X, d, m) 16 Chapter 3. The Lagrangian (Beppo...

متن کامل

Sobolev Metrics on Shape Space, Ii: Weighted Sobolev Metrics and Almost Local Metrics

In continuation of [5] we discuss metrics of the form GPf (h, k) = ∫

متن کامل

Principal component geodesics for planar shape spaces

In this paper a numerical method to compute principal component geodesics for Kendall’s planar shape spaces which are essentially complex projective spaces is presented. Underlying is the notion of principal component analysis based on geodesics for non-Euclidean manifolds as proposed in an earlier paper by Huckemann and Ziezold (2006). Currently, principal component analysis for shape spaces i...

متن کامل

Sobolev Metrics on Shape Space of Surfaces in N-space

This paper extends parts of the results from [14] for plane curves to the case of surfaces in Rn. Let M be a compact connected oriented manifold of dimension less than n without boundary. Then shape space is either the manifold of submanifolds of Rn of type M , or the orbifold of immersions from M to Rn modulo the group of diffeomorphisms of M . We investigate the Sobolev Riemannian metrics on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Imaging Sciences

سال: 2016

ISSN: 1936-4954

DOI: 10.1137/15100518x